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THE DETONATION BEHAVIOR OF AMMONIUM PERCHLORATE
AS A FUNCTION OF CHARGE DENSITY AND DIAMETER

By
A, R, Clairmont, Jr., I. Jaffe, and D. Price

ABSTRACT: The detorniability limits (critical diameter and critical
density) and the dependence of the detonation velocity on density
(po) and diameter (d) were studied for a finely ground ammonium
perchlorate. The present data indicate that the ideal detonation
velocity is D, (mm/psec) = -0.016 + 3.784 Po (+ 0.10 mm/psec) for
the range 0.6 < Po < 1,26 g/cc. The typical finite diameter curve
shows that the detonation velocity is non-linear in density and
exhibits a maximum in detonation velocity. The failure curve shows
a monotonic increase in critical diameter with critical density in
the range Po * 1.0 g/cc and is opposite in trend to that for TNT.
There is some indication that at high porosities (TMD ~ 30 to 50%)
ammonium perchlorate and TNT exhibit the same trends,
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THE DETONATION BEHAVIOR OF AMMONIUM PERCHLORATE
AS A FUNCTION OF CHARGE DENSITY AND DIAMETER

A. R. Clairmont, Jr., I. Jaffe, and D, Price

INTRODUCTION

Ammonium perchlorate (AP) is a high explosive, an inorganic
oxidizer, and one of the most common components of compoaite pro-
pellants, There is very little quantitative information about the
explosive behavior of composite oxidizer/fuel mixtures, and avail-
able detonction theory, based on the concept of unimolecular
deccemposition of pure high explosive (H.E.), cannot be expected to
be applicable without some modifications. For these reasons, we
have initiated a systematic study of models of a composite propel-
lant., The investigation will be of shock éensitivity, detonability
and detonation behavior as a function of physical conditions (charge
diameter, density, and particle size) and of chemical composition
(AP, AP/Wax, AP/Al, etc.). This report is the first on this
continuing work, and presents the results obtained from an AP system
of relatively small sized particles.

Aside from its importance as a major propellant ingredient,
AP 1s 1in itself a very interesting H.E. It has been studied before,
chiefly by Andersen and Pesantel, but their investigation did not
extend sufficiently far into the high density region to demonstrate
the distinctive explosive tehavior defined by the present results.
These show that AP provides a classic example of a group of explo-
sives which exhibit more ideal bhehavior at high porosity as opposed
to conventional H,E,'s which behave more ideally at low porosity
(see ref. 2),
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EXPERIMENTAL

The ammonium perchlorate, NHMClOu, Lot No. XP-17, was supplied
by Thiokol Chemical Company. It conformed to the Navy Department
specifications for AP® with the exception that 1t contained 1%
tricalcium phosphate instead of the specified 0,1 - 0,2%. The phos-
phate is an anti-caking agent ard was used in a higher than usual
concentration because this AP was finer than usual. By Micromero-
graph (see Fig, 1) its average particle size was 10 u,

The AP was dried in a 50°C oven for at least four hours before
being used to prepare charges. The charges were fired as soon as
possible after preparation; they were stored in a 30°C oven prior
to firing and exposed to the atmosphere 45 minutes or less while
being mounted for firing,

Cylindrical granular charges were prepared with dlameters of
1.90 to 7.62 cm and a length of 20,32 cm. The lowest density
charges (po < 1,0 g/cc) were hand packed and pressed in 0,08 mm
thick cellulne acetate envelopes, At 1,0 < Po < 1,2 g/ce, charges
were prepared in two increments on the hydraulic press. For Po >
1,2 g/cc, the AP was compacted in the isostatic press, after which
the charge was machlned to size,

The average bulk density of the charge could te determined
very accurately, to within 0.2% in the worst case. There was,
however, no check on the uniformity of the density within the charge
except by visual inspection and rejection of faulty charges., Charges
prepared isostatically should be the most uniform, and they appeared
to be excellent., In the density range of 1,0 to 1.2 g/cc, charges
of good uniformity could be obtained with careful preparation and
handling. In particular, at p, s 1.0 g/cc, the charge must be fired
within a day after its preparation., If it is allowed to stand
longer, aging and settling will produce small cracks and even
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column separation in such a very low strength charge. Charges of
Po < 1.0 were only fair in uniformity even with careful preparation
and no aging. The hand-sifted preparation (po ~ 0.6 g/cc) was the
most uniform of these and the intermediate range 0.6 < Po < 1.0,
contain the least satisfactory charges.

The AP charges were used in the experimental set-up of Fig. 2.
Boosters were either tetryl (po = 1,51 g/cc) or pentolite (po = 1,56
g/cc) initiated by an Engineer's Special detonator. Each AP charge
was capped by a witness charge of the same H.E, as the booster.

A 70 mm smear camera was used to follow the reaction front in
the AP charges., The camera slit was focused on the charge's periph-
ery and was parallel to its longitudinal axis. The camera recorded
the luminosity (or flasher-enhanced luminosity) of the detonation
front, The camera speed was cet between 1 and 3 mm/iisec to obtain
a smear trace at approximately 45° to the base of the film, The
film used was selected on the basls of expec*~d exposure from the
combination of luminosity of the front and the film speed. Table Al
of the appendix gives the conditions used for each shot,

In general, the smear record was obtained for the last 15 cm
of the AP charge, but when detonation occurs, the velocity measure-
ment can be made from the smear procduced by the last few centimeters
of the charge. Under these circumstances, the smear record was
frequently taken only for the last 6 to 7 cm of the charge to uti-
lize the higher resolution of higher writing speed. The length of
charge observed and camera writing speed are also listed in Table Al.

RESULTS

The smear camera records were read directly on the Universal
Telereader and simultaneously punched on the IBM cards by the
Telecordex, For a camera speed of 1 ¢o 3 mm/isec, the time can be

M
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read to 0,03 to 0.01 usec., For a charge length of 20 to 7 cm, the
distance can be read to 0.11 to 0.04 mm, When detonation occurred,
the time-distance data, on punch cards, were fitted by least squares
to a straigh®t line by a prograin for the 7090, Error in the deter-
mined velocity from errors in record reading is estimated, in the
worst case, to be 1,5%,

Table 1 contains nearly all the data collected. Among them
are nine replications: seven pairs and two groups of three. The
average deviation per shot ranges from O to 1.4% of the measured
detonation velocity with the distribution: 0.0 - 0,1% (4), 0.3 -
0.7% (4) and 1.4% (1). For the region covered by these data, that
for which Po 2 1,0 g/ce, the over-all exrerimental precision is
also 1.5% or less,

Typical records are shown in Figs. 3 - 5 where time increases
from left to right, Fig. 3 (Shot 93) 1s of a charge which detonated.
At the left of the figure is a still picture of the original charge
and its explosive witness pellet. The reglon observed by the smear
camera is along the bright axial line which is bracketed by the two
dark inked lines., To the right of the still, the slit 1s reproduced
again (vertical lines) as well as a line approxima‘tely perpendicular
to 1t, These llnes provide fiducial marks to permit obtaining the
appropriate cha.ge location corresponding to each point on the smear
trace., They also assist in reading the record on the Telereader.

The initial bright portion of the smear and the curvature of
that part of the trace results from overboostering combined with
the effect of a curved initlating front. After a run of 2.5 cm
(less than the charge diameter) the trace becomes straight and
remains so until the end of the charge where the witness detonates.

Fig, 4 (Shot 69) is an example of a smear record of a charge
which is Just sub-critical. The trace is curved and fading, but
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sufficient reaction persists to initiate detonation of the witness
pellet,

Fig. 5 (Shct 85) 1s the record from a clearly subcritical
charge., A fading reaction, induced by the shock from the booster,
falls after traveling about two diameters down the charge., The
witness pellet at the end of the charge is not initiated,

DISCUSSINN

Detonability

The data of Table 1 will be examined in a number of ways.
First it is most convenlent to establish the extreme behaviors, the
ideal and the fallure regions., Starting with the latter, we have
selected from Table 1 the data which establish the 1limit or failure
line in the charge diameter vs charge density plane. These data
are listed in Table 2 and part are plotted in Fig. 6. They show
the critical diameter (dc) vs critical density (pc) curve for this
particular AP at an ambient temperature of about 25°C and in the
range of 1,0 < p, < 1,57 g/ce,

The critical diameter 1s that diameter at and above which
detonation propagates and below which it fails, The failure of
detonation when the charge diameter 1s subcritical is attributed to
quenching of the detonation reaction zone by the arrival of lateral
rarefactions, It is, therefore, a two dimensional effect, and the
critical diameter will be closely related to the reaction zone
lergth; the two quantities will vary in the same way,.

Fig. 6 shows that for AP, d, (and hence reaction zone length)
increases with increasing Po (above Po = 1.0 g/cc), a trend ogpo-
site to that observed in common conventional H,E, such as TNT,
Moreover, for a given diameter, the critical density is that above

12
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T A‘DT RO

ny

LIMIT DATA FOR AP (10 )
L1m1t+Density Sg/cc)

Diameter (cm) p p
1.90 none 0.7 to 1.1
2,22 0.62 0.60
2,22 0.96 1,00*
2.54 1.15 1.20
3.49 1,34 1,385
5.08 1.454 1.484%
7.62 1,46 1.57*

*Judged very close to critical value.

13
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which detonation cannot occur. (For TNT, Peo is that below which
detonation cannot occur.,)

In addition to our own data, Fig. 6 shows other investigators'
results for AP of about the same average particle size as that
which we have used., The qualitative form of Fig, 6 had already
been established by Anderson and Pesante1 as thelr values ac¢ two
densitles show, The order of magnitude comparlson between our
results and theirs is quite satisfactory. Detailed consideration
merely emphasizes that a single number such as a weight average
particle size (or a surface area computed from it) cannot by itself
adequately characterize a granular AP sample., Thus Ref, (1) results
indicate a d, lower than ours; Ref. (4) results, a d, about equal
ours, both at Py = 1.0 g/cc. However, the average particle size is
in both cases supposedly greater than ours and one would eXxpect
therefore greater values of d (d decreases with particle size
if the size change 1s caused by grinding .)

The form of Fig. 6 immediately suggests examining the curve
p. V8 dc-l. When smoothed data from Fig., O are so plotted, the
sigmoid curve of Flg., 7 1s obtained; it indicates an asymptotic
approach to a large value of the critical dlameter at Py = 1.95
g/cc, the crystal density of AP, But a straight line extrapolation
thrgugh the point of inflection of Fig, 7 gives PE = 1.74 at dc_1 = 0,
dc = 0 or dc = OO0 means, of course, a nondetonable material, and
the straight line extrapolation suggests the possibility that this
AP, in charges for which 1,74 < Po < 1,95, 1s nondetonable. How-
ever, this linear extrapolation is of dubious validity since the
1limit curve of Fig., 6 is not sufficiently accurate and does not
extend to sufficliently high values of Po to justify such a treat-
ment, The question of whether there 1s a critical density below
the crystal density of AP for which the material 1s nondetonable at
any diameter can only be resolved by investligating the detonability

of much larger charges than can be fired in the present work,

15
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Although our results .nnot answer this question, they nake
very clear the difficulty of detonating granular AP at high loading
density. The difficulty increases as the particle size of AP
increases, for the limit curve of Fig. 6 shifts to larger dilameters
as the particle size 1ncreasese. This information 1s part of that
being collected for application to problems of detonability of
composlite propellants where AP is present as a component in an
almost voidless charge.

Fig. 6 shows the 1limit curve only for Po = 1.0 g/cc, The data
of Table 2, however, give d, (p0 = 0,51) = d, (po = 1,0) as do also
the data of Ref. (1). Existence of one point on the limit curve
where the critical density is doutle-valued suggests that the com-
plete 1limit curve might be of the form of Fig. 8, and that at
sufficlientiy low densitles there is a second critical density value
below which detonation cannot occur. In other words, 1t sufficiently
low densities, the limiting behavior may be similar to that of con-
ventional H,E, Note that in Table 2, at d = 2,22 cm, detonation
occurs at 0,62 g/cc and fails at 0,60 g/cc, the lower po3 Whereas

at Po > 0,61, failure always occurs at the higher Poe Unfortunately,
it is experimentally impossible to prepare charges of this AP at
densitles lower than 0.60 g/cc and hence to explore this lower
density region*, We will, however, loox for a similar phenomenon

in an experimentally accessible region in other explosives,

Another implication of Fig. 8 i1s the existence of a diameter
below walch AP (10 p) will not detonate at any density. This diam-
eter 1s the minimum on Fig. 8 and would in this case be close to
2.2 cm (see Fig. 9).

*Indeed, it 1s impossible to explore the region Po C.8 g/ce more
quantitatively because of the difficulty of preparing good charges.,
We know only that 1.90 cm < d, (p, = 0.8) < 2,22 cm,

17
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Detonation Behavior Pattern

The D data of Table 1 are plotted as functions of Po along
constant d curves in Fig. 9. Typically, the ncnideal charges
exhibit, at a fixed diameter, a detonation velocity increasing with
increasing Py to a maximum value., Beyond this maximum, D decreases
as p, increases untll 1t reaches 1ts critical value at the failure
1imit, The limit line, dividing the detonatior from the failure
area (po > 1,0 g/cc) has been drawn through smoothed data obtained
from Fig. 6., It 1s shown as a dashed line which gives the critical
detonation velocity as a function of Pe and 1s slightly concave
upward., It runs into the D vs p, curve for d = 2.22 cm, This
latter curve 1s considered an extension of the limit line since
none of the charges at 1.90 cm dlameter could be detonated,

At the left of the curves 1s a second tentative limit line for
the lower densities in aczord with the suggested curve of Fig. 8,
It 1s possible, of course, that better definition in the region
Py ~ 0.8 g/cc might show the first limit curve dipping slightly
below the 2,22 cm curve before it joins the second limit curve at
Py ~ 0.61 g/ce.

The curves, d > 2,22 cm were obtalned by using the best visual
fit p 2 1.0 g/cc and a straight line in the interval of 0.6 to
1,0 g/cc. The experimental difficulty of obtaining charges in this
density range it the cause of the scarcity of data here, It 1s
also probably more to blame for the large scatter than 1s the
assumed linear form., Certainly the two 4% deviations from the
curves at p = 0.8 are the largest in all these data. The next
largest is < 2%,

The overall detonation behavior illustrated in Fig. 9 is an

approach to the infinite diameter value with increasing diameter
and decreasing density, As Po increases, D values diverge

18
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increasingly from the ideal. This is «a detailed example of the
behavior expected from members of the group 2 explosive class
discussed in Ref, (2), It is also opposite in trend to that shown
by conventional or group 1 H,E., which approach ideal behavior as
density increases.

It 1s of interest to note that as the critical density is
Just exceeded for each value of d, the shock-induced reaction fails,
but nevertheless persists for quite an interval. Table 1 shows
several failing reactions which propagate 3 - 4 diameters before
fading completely. This behavior is in contrast to that of TNT-
like explosives for which low porosity charges show sharp failure at
the critical density.

The persistence of a fading reaction is of itself 2n interest-
ing phenomenon which we plan to investigate further. Here it has
practical implications in making the limit line of Fig. 6 and hence
that of Fig., 9 less certain., With our charge length of 20,3 cm, the
experimental range in 4/d is from about 10 to 2.7. The longest run
for a failing reaction in Table 1 is about 7.5 d4; moreover, reac-
tions have Tailed after =everal dlameters travel at what appeared a
constant velocity. This situation introduces uncertainties which
the data at d = 5,08 cm illustrate. Here 4/d = 4,0, and the records
showed a constant veloc: ty over the last half of the charge for
Po = 1.45 g/cc and a slightly falling one at Po = 1.48 g/ce. Con-
secuently we have shown 1,45 < Py < 1,48 g/cc and placed p, near
1.48 g/cc in Fig, 6, However, we also prepared a charge of 1/d = 8.0
by us'‘ng two isostatically pressed, 20.3 cm long cylinders of
Po = 1.45 g/ce in tandem, The camera viewed only the last 19 cm of
the charge and hence just missed the contact surface between the
two cylinders, The record of this shot showed a2 very short, but
apparently linear, trace (3.05 mm/usec) which faded completely after
6,86 cm, i.e., at 28.4 cem (5.6 diam) from the booster end of the
charge. Since Po = 1,45 g/cc 1s certainly very close to the true
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Pe? interruption of the charge by the use of two segments could
cause such a failure. Obviously a single cylinder charge of this
density and 4/d ~ 8 would have to be tested to confirm or shift
our present boundaries for the critical density.

The exact location o1 a limit curve such as Fig. 5 does not
seem of great importance because it will probably differ for every
batch of AP used., However it is of importance to investigate the
cause of the nonlinear D vs o curves of Fig. 9. As the start of
such a study, concuctance®* during and after detonation was measured
on 5.08 cm charges. The AP at Po = 1.26 g/cc (64.6% TMD) showed a
maximum conductance equal that of a coarse HMX at Po = 1.22 g/ce
(64,2% TMD) but lasting 1.7 times as long. The maximum conductance
of the AP at 1.38 g/cc and at 1,47 g/cc 1s the same and about 4OF
higher than that fourd at p = 1,26 g/cc, There is therefore
little doubt that considerable reaction has been induced by shock-
ing the 1.47 g/cc AP charge - and at a distance of 7.6 ecm (1.5 d)
from the point of entry of the shock - although it is quite probdb-
able that detonation does not occur and that the induced reaction
will fade after a longer run.

Ideal Behavior

Fig. 9 shows, as its top curve, the ideal or infinite diameter
curve derived from those below it. Some discussion of its deriva-
tion and form is necessary.

We have studied only one other pure explosive exhibiting non-

ideal curves of the form shown in Fig. 9; that material was

*This work was carried out as part of a development program for
conductivity measurements. It will be reported in detail when the
development work is completed.
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hydrazine mononitrate (HN). Although HN was not studied in as
great detall as this AP, the results for it clearly indicated that
the form of the nonideal curves (and existence of a maximum) were
two-dimensional effects, that at a sufficiently large diameter, a
conventional linear D vs p, curve is obtaineds). We assume,
therefore, that this 1s also true for AP, In fact, our 7.62 cm
diameter curve appears to be linear in the range of 1.0 to 1.25
g/cc, and the 10,16 cm diameter curve of Ref, (1) appears to be
linear in the range 0.6 to 1,25 g/cc.

In general, curves of D vs d are of an unsultable form for
extrapolation to the infinice Jiameter or ideal detonation veloc-
ity. Such a treatment is particularly inarpropriate here because
of the nonlinearity of the D vs p, curves, Consequently we have
followed the common practice of plotting D vs d-1 (a curve assumed
linear if d is sufficiently large) and have neglected all smaller
diameter data that appear low. In this treatment we have used no
data on the high density side of the maximum on any curve., Such
data obviously lead to too hizh values of the D vs d-1 intercept.

There 1is nc theoretical guarantee that any of our D vs a1
data are within the region of the usual linear relation or even
that there will be a linear portion of the D vs a1 curve. However,
Evans et al6 have shown that at p = 1.0 g/cc the D vs a7l curve
is linear over the diameter range of about 3.5 to 23 cm for an AP
of 13 u average size, Hence extrapolation at this density should
give a good result. There 1s no comparable guidance at either
0.C1 or 1.26 g/cc. At the lower density, our charges were of such
poor quality that we accepted only two for shots, Here we have
inadequate data for extrapolation. Although we have made a two-
point :stimate of D, (po = 0,6), it is considered just that, an
estimate not a determination. If a more firiely ground sample of
AP which produces better quality charges can be obtalned, a deter-
mination of D, will be attempted. (If uniform charges can be
obtained at p, = 0.6, they would be expected tc give a linear
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D vs a1 curve over at least the same d range as the p, = 1.0 g/ce

data because AP seems to behave more ideally at lower densities.)
In extrapolating the Po = 1.26 g/cc data, one expects errors such
as to make D1 too large, because the D vs p, curves are already
nonlinear at this density (see Fig. 9).

Table 3 contains the data used for the extrapolations (shown
in Fig. 10) at densities of 0,61, 1,00, and 1.26 g/cc. 1In the
latter two cases, a least squares fit to a straight line was used.
Also shown in Fig, 10 are two points (p° = 1.25 g/cc) read from
the 6.35 em and 10,16 cm curves of Ref. (1). The larger value
falls on our curve; the lower, about 0.2 mm/usec below our curve,
However, the 6,35 cm data of Ref. (1) had a very large scatter;
with smoothing that point too moves up to our curve as indicated
by the arrow.

The D1 values from Fig. 10 are given in Tatle 3 and plotted
as starred points in Fig. 9. Of these three values, D, (po = 1,0
g/cc) is unquestionably the best, The charges were reproducible
and the D vs d"! data are linear over the experimental range of d.
The point at Py = 1.0 g/cc has consequently been heavily weighted
in selecting the equation

Dy (mm/usec) = -0,016 + 3,784 Po 0.6 < p, = 1.26 g/cc (1)
which reproduces the values of Table 3 within % 0.10 mm/usec.

It 1s quite evident that Eq. (1) cannot hold at Py = 0, for
it would predict a negative (meaningless) velocity rather than
one appropriate for a gaseous detonation. Perhaps the ideal curve
bends sharply away from the linear relation at lower densities;
there was a suggestion of this possibility in the HN datas. More-
over, the equations for linear segments between the three points

are
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Dy = -0.45 + 4.19 p 1.26 g/cc

=
L]
o
A
©
(o}
[

i

Dy = 0.28 + 3,46 Po

o

o
W
o
IA

- 1,0 g/ce

and Egs. (2) show the suggested concavity. (These equations can
be used in place of Eq. (1) for interpolation between the data
pointa,)

Eq. (1) as one bounding 1imit of Fig. 9 and the D, Vs p,
curve as the other limit give no indication of an intersecticn in
the high density region. However, if the slope of the ideal curve
is erroneously high, e.g., if the curve passed through the point
at p, = 1.0 g/cc with a much lower slope, it might intersect the
somewhat concave Dc Vs p, curve at a density below the crystal
density of 1.95 g/cc.

Compariscn of Eq. (1) with results of other investigators does
not resolve the uncertainties of the values at 0,6 and 1.26 g/cc.
The comparison is shown in Table 4, Three sets of data agree very
well at p, ~ 1,0 g/ce. The value at 1,24 g/ce agrees well with
that obtained by extrapolating measurerents made under confinement
on a much coarser cample of AP, but exceeds by 3% the value given
in Ref. (1). However, the curve of Ref, (1)

D, = 1.012 + 2.688 p, (3)

1
vas not obtained by extrapolating D vs a’l, Instead, it appears

to be the D vs p_ data for the 10.16 cm charges. As Table 4 data
show, when the Ref. (1) D vs d"! data are extrapolated to a"1 = 0,
they yleld essentlally the same D1 (po = 1,25 g/cc) value as

Fig. 10 and as Ref. (7). Unfortunately, the fact that the same
value can be obtained by the same treatment of three different sets

of data still does not mean it 1s the correct one,
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There is no similar way to reconcile the difference between
our estimate of Dy (p, = 0.6) and the value of Ref. (1). Eq. (3)
is certainly preferable to Eq. (1) in that it is more physically
reasonable at low densities, Yet we hesitate to adopt the 0.6
g/cc value when six shots at 6.35 cm diameter showed a range of
2,38 to 2.71 mm/jtsec. Nevertheless, the Ref. (1) value may be the
better, and there is some support for it given in the Appendix.

We hope to check both the high and the low densityv values
with finer samples of AP, The smaller particle size may permit
the production of better quality low density charges. It may also
increase the detonation velocity so that several linear D vs Po
curves can be obtained (linear at and beyond p, = 1.26) at diam-
eters at or below d = 7,52 cm, the permissible limit in NOL
bombproofs.,

Theoretical computations of the detonation characteristics of
AP have been carried out by two different groupsl’u, but these do
not resolve the problems either, Different equations of state
were used, and the results obtained do not agree with each other.
This is illustrated in Fig. 11 which shows the disagreement between
the two computed Di Vs p, curves as well as between both theoreti-
cal curves and the experimentally derived values of this report,
Chaiken8 has given a detailed discussion of the inadequacy of the

Ruby computed values to reprcduce the AP behavior.

In summary, Eq. (1) is the ..st representation of the present
data as a linear segment of the Di Vs p, curve. The crosses plotted
about it in Fig. G were obtained from the smoothed finite diameter
curves at loading densities of 0,80, 1.15 and 1.30 g/cc. In each
case a two point extrapclation of D vs d'1 gave a value on the
ideal curve within + 0,10 mm/usec.
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Effect of Porosity on Reaction Zone lLength

The detonability limit curve of Fig. 6 has already shown that
for this AP, the reactlion zone length ilncreases with increasing Po
in the range p, 2 1 g/cc. Anderson and Pesante® showed that their
D=D (po, d) Aata were des:ribed reasonably well by any of th:
available diameter theories, but the scatter of their data was
much larger than ours. In particular, our best data (those at 1,0
g/cc) show a linear D vs a1 curve and a non-linear D2 vs 47° curve,
Hence the Eyring curved front theory9 fits our data better than the
Jones nozzle theory. Consequently, we shall use the curved front
theory to compute nominal rea:tion zone lengths.

For unconfined charges, this theory gives

where a 1s the reaction zone length.

The curves of Fig, 1l are in the form

_ -1
D = Di + bd
Hence
D b -1
=— =1+=4d
Di Di
and
a = -b/Di (5)

Values of b and Di are given in Table 3., From them, nominal reaction
zone lengths have been calculated from Eq. (5) and are listed in
Table 5., They indicate a decrease in the reaction zone length (a) as
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TABLE 5

NOMINAL REACTION ZONE LENGTH AS FUNCTION
OF LOADING DENSITY FOR AP

Nominal Reaction

Loading Density Zone Length*
Por 8/cc mm
0.6 7.5
(0.8) (7.1)
1.0 6.3
(1.15) (7.1)
1.26 1¢.0
(1.30) (11.5)

*Curved Front Theory

Values in parentheses from interpolations
and extrapolations
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the loading density increases from 0.6 to 1.0 g/cc and an increase
as p, increases above 1,0 g/cc. This is consistent with the form
of the suggested limit curve of Fig. 8.

The AP trend, reaction zone length vs porosity, for p = 0.6
to 1.0 g/cc is qualitatively the same as that of conventional H.E,
Moreover, the reaction zone lengths in this region are about the
same size as those of common H,E, For example, a TNT at 48% TMD had
b and D, values of -20.3 mm?/hsec and 4.85 mm/itsec, respectively e
Its computed nominal reaction zone length is 4,2 mm whereas at the
same porosity AP has p = 0.94 g/cc and, by interpolation (Table 5),

a zone length of 6.5 mm,

The reaction time (T) is related to the reaction zone length
by

T = (/py D) a (6)

uhere'ﬁ is the average density between the von Neumann and the
C - J planes., Andersen and Pesante1 believe that the detonation of
granular AP is 2 grain burning process in which the rate-controlling

step is a sublimation., In this case

T = ng/s (7)

where Fé is the average radius of the explosive particles and . 1is
a linear thermal surface vaporization rate. By a linear pyrolysis
technique, they determined for AP

B (cm/sec) = 5,88 T exp (-20,000/RTS)* (8)

%Changed in subsequent work to 31 T, exp (-22,000/RT8) and then to
21 T, exp (-21,500/RT_). Units of the exponent are cal/mole,
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In order to use Eq. (8) to compute T and hence a, it is necessary to
know the detonation temperature TJ and assume that 1t is the particle
surface temperature TS. Andersen and Pesante did this for their
computed TJ and got T values comparable to those given by the diam-
eter effect theories. However, this involved extrapolation of their
pyrolysis data to the computed detonation temperatures. Of all
detonation properties, TJ 1s least well known., For example, Ref., (1)
shows T, of 1915°K to 2075°K computed for p  of 0.6 to 1.5 g/cc
whereas Ref., (6) gives 1722°K to 1039°K for Po Of 0.55 to 1.55 g/cc.
There seems little point of further application of Eq. (8) to un-
known TJ.

Although we have followed conventional methods in the treatment
of the present data, it 1s not at all clear how applicable the usual
hydrodynamic treatments are at the very low densities of some
granular charges. The present results suggest that different mech-
anisms of reaction may be dominant in the detonation of AP at low
and at high densities., One factor which might affect initilation and
propagation at low densities (and be lessened or absent at high
densities) 1s the flow of hot gas products into the unreacted explo-
sive ahead of the propagating detonation front. An attempt will be
made to record such a disturbance if it exists in the very porous

charges,

SUMMARY

The family of curves D = D (po, d) obtained for AP (10 u) shows
systematic and regular variations. The behavior pattern differs
from that of conventional H.E, such as TNT in that

(1) D is not a linear function of P, at a given d (In fact,

D is not uniquely defined by Po and d since the same velocity can
be exhibited at two density values.)
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/2) The critical or faillure density increases with increas-
ing dic eter in the range of TMD > S0%.

(3) Pailing reactions persist and propagate as far as 3 -
L diameters and more under conditions that sre subcritical.

(4) Behavior appears more i1deal at low densities than at
high.

In addition to the above trends found in the range of TMD >
50%, we also found some evidence that at very low densities (TMD ~
30 to 50%) AP (10 p) exhibits a detonability limit behavior quali-
tatively similar to that of TNT at the same high porosity.
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APPENDIX A

SUPPLEMENTARY DATA

Table Al contains experimental details for the optical condi-
tins for each record: flasher, film, charge length viewed and
writing speed of the camera.

AP XP-11 was originally very similar to XP-17, but its plastic
¢ontalner was torn and the AP picked up enough moisture to cake,
The cake was dried and rolled to obtaln enough materlal to make low
density charges of different diameters. The first set of charges
were S0 poor that heterogeneous portions could be observed on the
stills taken with each shot. These data are considered worthless
and wili not be reported. The second series was of much better
quality, though still far from satisfactory. Their results are
given in Table A2 and plotted D vs a1 n Fig. Al. The Ref. (1)

D1 value from the 10.2 cm curve and the present value from Eq. (1)
are also given in Table A2 for comparison. The present value checks
the Ref. (1) value rather than that of Eq. (1). However, the
charges were s8til) unsatisfactory and the D vs d'1 slope or b value
of Table A2 indicates a very coarse charge (compare with b values

of Table 3) or possibly a higher density than 0.7 g/cc with a
collapse of the charge before detonation occurred. Consequently,

a new lot of finely ground AP must be procured in order to check
this low density point,
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TABLE Al
EXPERIMENTAL CONDITIONS FOR THE SHOTS

Writing

Length Speed
Flasher Film Observed W

Shot No, a b ir sec
137 7.5 1
147 7.5 2
173 T.5 2
174 T.5 2
153 7.5 1
149 2.5 1
141 T.5 1
143 25 1
144 2.5 2
142 T.5 1
148 2.5 2
52 P 7.5 1
101 7.5 1
150 2.5 2
124 2,5 2
49 P Te> 1
55 P T.5 1
56 P T.5 1
127 M 2.5 3
126 M T.5 1
139 M 7.5 1
85 M | Te5 1

60 P T.5
61 P T.5
131 M 2.5 3
39
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TABLE Al (Cont'd)

Writing

Length Speed
Flasher Fidm Observed L]

Shot No. a b in, sec
132 M 2.5 3
89 N P T.5 1l
87 N P 7.5 1
88 N B 7.5 1
94 N P 1§05) 1
95 N P 7.5 1
98 M P 2.5 3
109 N P T.5 1
111 M P 2.5 3
110 M P 2.5 3
112 P 7.5 2
136 M over A 7.5 1
154 M over A 2.5 3
53 P 7.5 1
54 P 7.5 1
70 M P T.5 1
71 M P T.5 1
T2 M P T.5 1l
73 M P T.5 1
T4 M P 7.5 1
69 M P 7.5 1
63 P 7.5 1
64 P 7.5 1
91 N P 7.5 1
G2 N p 7.5 1l
93 N P T.5 1
114 M P 2.5 3
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TABLE Al (Cont'd)

Writing

Length Speed
Flasher Film Observed W

Shot No. a b in, mn/jLsec
116 P 2.5 3
113 M P 2.5 3
115 M P 2.5 3
134 M 7.5 2
117 M P 7.5 1l
118 P T.5 3
82 S P T.5 1
83 S P T.5 1
84 S P 7.5 1
96 N P 7.5 1
97 Y P 7.5 1
99 N P 2.5 3
369 2.5 2
370 2.5 2
371 2,5 2
376 2.5 2

a. Cellulose acetate used unless otherwise specified.
Symbols are: A cellulose acetate; M magic tape;
N none; S Scotch tape,

b. T Tri-X film used unless P (Panatomic-X) specified.
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